Lie groups and kinematic geometry in the plane

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Transformation Groups and Geometry

We present geometrical aspects of Lie groups and reductive homogeneous spaces, and some resent results on homogeneous geodesics and homogeneous Einstein metrics. The article is based on the four lectures given in Varna, June 2007.

متن کامل

Nonholonomic Kinematic Chains on Lie Groups

We consider kinematic chains evolving on a nite{ dimensional Lie group G under nonholonomic constraints, where snake{like global motion is induced by shape variations of the system. In particular, we consider the case when the evolution of the system is restricted to a subspace h of the corresponding Lie algebra G; where h is not a subalgebra of G and it generates the whole algebra under Lie br...

متن کامل

The Geometry of Filiform Nilpotent Lie Groups

We study the geometry of a filiform nilpotent Lie group endowed with a leftinvariant metric. We describe the connection and curvatures, and we investigate necessary and sufficient conditions for subgroups to be totally geodesic submanifolds. We also classify the one-parameter subgroups which are geodesics. Department of Mathematics, Wellesley College, 106 Central St., Wellesley, MA 02481-8203 m...

متن کامل

Complex Geometry and Representations of Lie Groups

Let Z = G/Q be a complex flag manifold and let Go be a real form of G. Then the representation theory of the real reductive Lie group Go is intimately connected with the geometry of Go-orbits on Z. The open orbits correspond to the discrete series representations and their analytic continuations, closed orbits correspond to the principal series, and certain other orbits give the other series of...

متن کامل

Notes on Differential Geometry and Lie Groups

However, for any point p on the manifold M and for any chart whose domain contains p, there is a convenient basis of the tangent space Tp(M). The third definition is also the most convenient one to define vector fields. A few technical complications arise when M is not a smooth manifold (when k 6=∞), but these are easily overcome using “stationary germs.” As pointed out by Serre in [161] (Chapt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky

سال: 1968

ISSN: 0528-2195

DOI: 10.21136/cpm.1968.108572